
{{ }}Scalable and Modular
Architecture for CSS

A flexible guide to developing
sites small and large.

by Jonathan Snook

Scalable and Modular
Architecture for CSS

By Jonathan Snook

Copyright 2012 Jonathan Snook
All Rights Reserved

SMACSS: Scalable and Modular Architecture for CSS
http://smacss.com

ISBN 978-0-9856321-0-6

Snook.ca Web Development, Inc.
Ottawa, Ontario, Canada
http://snook.ca

Second edition

About the Author

Hi, my name is Jonathan Snook. I am a web developer and designer
who has been building websites as a hobby since 1994 and as a pro-
fessional since 1999.

I maintain a blog at Snook.ca where I write tips, tricks and book-
marks on web development. I also speak at conferences and work-
shops and have been thankful to have been able to travel the world
to share what I know.

I’ve co-authored two books to date: The Art and Science of CSS
(from Sitepoint) and Accelerated DOM Scripting (from Apress). I’ve
also written for .net magazine, A List Apart, Sitepoint.com, and
many more resources online and off.

Having worked on hundreds of web projects, including most recent-
ly on the successful Yahoo! Mail redesign, I’ve written this book to
share my experience with building websites small and large.

I’d like to express my deepest gratitude to everybody within the
community. Each and every one of you make this a career that I
continue to enjoy having. A special thank you to Kitt Hodsden for
pushing me to write this and share it with everyone. Lastly, to my
boys, Hayden and Lucas, who continue to push me to be a better
person.

Scalable and Modular Architecture for CSS 1

http://snook.ca

Introduction

I have long lost count of how many websites I’ve built. You would
think after having built a few hundred of them I would have discov-
ered the “one true way” of doing it. I don’t think there is one true
way. What I have discovered are techniques that can keep CSS more
organized and more structured, leading to code that is easier to
build and easier to maintain.

I have been analyzing my process (and the process of those around
me) and figuring out how best to structure code for projects on a
larger scale. The concepts were vaguely there with the smaller sites
that I had worked on but have become more concrete as a result of
working on increasingly complex projects. Small sites don’t often
hit the same pain points as larger sites or working with larger
teams; small sites aren’t as complex and don’t change as often.
However, what I describe in these pages is an approach that works
equally well for sites small and large.

SMACSS (pronounced “smacks”) is more style guide than rigid
framework. There is no library within here for you to download or
install. SMACSS is a way to examine your design process and as a
way to fit those rigid frameworks into a flexible thought process. It
is an attempt to document a consistent approach to site develop-
ment when using CSS. And really, who isn’t building a site with CSS
these days?! Feel free to take this in its entirety or use only the
parts that work best for you. Or don’t use it at all. I understand
that this won’t be everybody’s cup of tea. When it comes to web de-
velopment, the answer to most questions is “it depends”.

2 Scalable and Modular Architecture for CSS

What’s in here?

My thoughts have been compartmentalized around a number of
topics related to CSS architecture. Each thought is detailed in its
own section. Read the sections in sequence or out of order or pick
and choose what seems most relevant to you. It’s not 1000 pages of
writing; the sections are relatively short and easy to digest.

Now get started and dive in!

Scalable and Modular Architecture for CSS 3

Categorizing CSS Rules

Every project needs some organization. Throwing every new style
you create onto the end of a single file would make finding things
more difficult and would be very confusing for anybody else work-
ing on the project. Of course, you likely have some organization in
place already. Hopefully, what you read among these pages will
highlight what works with your existing process and, if I’m lucky,
you will see new ways in which you can improve your process.

How do you decide whether to use ID selectors, or class selectors, or
any number of selectors that are at your disposal? How do you de-
cide which elements should get the styling magic you wish to be-
stow upon it? How do you make it easy to understand how your site
and your styles are organized?

At the very core of SMACSS is categorization. By categorizing CSS
rules, we begin to see patterns and can define better practices
around each of these patterns.

There are five types of categories:

1. Base
2. Layout
3. Module
4. State
5. Theme

We often find ourselves mixing styles across each of these cate-
gories. If we are more aware of what we are trying to style, we can
avoid the complexity that comes from intertwining these rules.

4 Scalable and Modular Architecture for CSS

Each category has certain guidelines that apply to it. This some-
what succinct separation allows us to ask ourselves questions dur-
ing the development process. How are we going to code things and
why are we going to code them that way?

Much of the purpose of categorizing things is to codify pat-
terns—things that repeat themselves within our design. Repetition
results in less code, easier maintenance, and greater consistency in
the user experience. These are all wins. Exceptions to the rule can
be advantageous but they should be justified.

Base rules are the defaults. They are almost exclusively single ele-
ment selectors but it could include attribute selectors, pseudo-class
selectors, child selectors or sibling selectors. Essentially, a base
style says that wherever this element is on the page, it should look
like this.

Examples of Base Styles

html, body, form { margin: 0; padding: 0; }
input[type=text] { border: 1px solid #999; }
a { color: #039; }
a:hover { color: #03C; }

Layout rules divide the page into sections. Layouts hold one or
more modules together.

Modules are the reusable, modular parts of our design. They are
the callouts, the sidebar sections, the product lists and so on.

State rules are ways to describe how our modules or layouts will
look when in a particular state. Is it hidden or expanded? Is it ac-
tive or inactive? They are about describing how a module or layout
looks on screens that are smaller or bigger. They are also about de-
scribing how a module might look in different views like the home
page or the inside page.

Scalable and Modular Architecture for CSS 5

Finally, Theme rules are similar to state rules in that they describe
how modules or layouts might look. Most sites don’t require a layer
of theming but it is good to be aware of it.

Naming Rules

By separating rules into the five categories, naming convention is
beneficial for immediately understanding which category a partic-
ular style belongs to and its role within the overall scope of the
page. On large projects, it is more likely to have styles broken up
across multiple files. In these cases, naming convention also makes
it easier to find which file a style belongs to.

I like to use a prefix to differentiate between Layout, State, and Mo-
dule rules. For Layout, I use l- but layout- would work just as

well. Using prefixes like grid- also provide enough clarity to sepa-

rate layout styles from other styles. For State rules, I like is- as in

is-hidden or is-collapsed. This helps describe things in a very

readable way.

Modules are going to be the bulk of any project. As a result, having
every module start with a prefix like .module- would be needlessly

verbose. Modules just use the name of the module itself.

6 Scalable and Modular Architecture for CSS

Example classes

/* Example Module */
.example { }

/* Callout Module */
.callout { }

/* Callout Module with State */
.callout.is-collapsed { }

/* Form field module */
.field { }

/* Inline layout */
.l-inline { }

Related elements within a module use the base name as a prefix.
On this site, code examples use .exm and the captions use .exm-

caption. I can instantly look at the caption class and understand

that it is related to the code examples and where I can find the
styles for that.

Modules that are a variation on another module should also use
the base module name as a prefix. Sub-classing is covered in more
detail in the Module Rules chapter.

This naming convention will be used throughout these pages. Like
most other things that I have outlined here, don’t feel like you have
to stick to these guidelines rigidly. Have a convention, document it,
and stick to it.

Scalable and Modular Architecture for CSS 7

Base Rules

A Base rule is applied to an element using an element selector, a
descendent selector, or a child selector, along with any pseudo-
classes. It doesn’t include any class or ID selectors. It is defining the
default styling for how that element should look in all occurrences
on the page.

Example Base Styles

body, form {
margin: 0;
padding: 0;

}

a {
color: #039;

}

a:hover {
color: #03F;

}

Base styles include setting heading sizes, default link styles, default
font styles, and body backgrounds. There should be no need to use
!important in a Base style.

I highly recommended that you specify a body background. Some
users may define their own background as something other than
white. If you work off the expectation that the background will be
white, your design may look broken. Worse, your font colour choice
may clash with the user’s setting and make your site unusable.

8 Scalable and Modular Architecture for CSS

CSS Resets

A CSS Reset is a set of Base styles designed to strip out—or re-
set—the default margin, padding, and other properties. Its purpose
is to define a consistent foundation across browsers to build the
site on.

Many reset frameworks can be overly aggressive and can introduce
more problems than they solve. Removing margin and padding
from elements only to introduce them again creates duplicated ef-
fort and increases the amount of code needed to be sent to the
client.

Many find resetting styles a helpful tool in site development. Just
be sure to understand the drawbacks of the framework you wish to
use and plan accordingly.

Developing your own set of default styles that you consistently use
from project to project can also be advantageous.

Scalable and Modular Architecture for CSS 9

Layout Rules

CSS, by its very nature, is used to lay elements out on the page.
However, there is a distinction between layouts dictating the major
and minor components of a page. The minor components—such as
a callout, or login form, or a navigation item—sit within the scope
of major components such as a header or footer. I refer to the mi-
nor components as Modules and will dive into those in the next sec-
tion. The major components are referred to as Layout styles.

Layout styles can also be divided into major and minor styles based
on reuse. Major layout styles such as header and footer are tradi-
tionally styled using ID selectors but take the time to think about
the elements that are common across all components of the page
and use class selectors where appropriate.

Layout declarations

#header, #article, #footer {
width: 960px;
margin: auto;

}

#article {
border: solid #CCC;
border-width: 1px 0 0;

}

Some sites may have a need for a more generalized layout frame-
work (for example, 960.gs1). These minor Layout styles will use
class names instead of IDs so that the styles can be used multiple
times on the page.

1.http://960.gs/

10 Scalable and Modular Architecture for CSS

http://960.gs/
http://960.gs/
http://960.gs/
http://960.gs/

Generally, a Layout style only has a single selector: a single ID or
class name. However, there are times when a Layout needs to re-
spond to different factors. For example, you may have different lay-
outs based on user preference. This layout preference would still be
declared as a Layout style and used in combination with other Lay-
out styles.

Use of a higher level Layout style affecting other Layout styles.

#article {
float: left;

}

#sidebar {
float: right;

}

.l-flipped #article {
float: right;

}

.l-flipped #sidebar {
float: left;

}

In the Layout example, the .l-flipped class is applied on a higher
level element such as the body element and allows the article and
sidebar content to be swapped, moving the sidebar from the right
to the left and vice versa for the article.

Scalable and Modular Architecture for CSS 11

Using two Layout styles together to switch from fluid to fixed
layout.

#article {
width: 80%;
float: left;

}

#sidebar {
width: 20%;
float: right;

}

.l-fixed #article {
width: 600px;

}

.l-fixed #sidebar {
width: 200px;

}

In this last example, the .l-fixed class modifies the design to

change the layout from fluid (using percentages) to fixed (using
pixels).

One other thing to note in the Layout example is the naming con-
vention that I have used. The declarations that use ID selectors are
named accurately and with no particular namespacing. The class-
based selectors, however, do use an l- prefix. This helps easily

identify the purpose of these styles and separate them from Mod-
ules or States. Layout styles are the only primary category type to
use ID selectors, if you choose to use them at all. If you wish to
namespace your ID selectors, you can, but it is not as necessary to
do so.

Using ID selectors

To be clear, using ID attributes in your HTML can be a good thing
and in some cases, absolutely necessary. For example, they provide

12 Scalable and Modular Architecture for CSS

efficient hooks for JavaScript. For CSS, however, ID selectors aren’t
necessary as the performance difference between ID and class se-
lectors is nearly non-existent and can make styling more compli-
cated due to increasing specificity.

Layout Examples

Theory is one thing but application is another. Let’s take a look at
an actual website and consider what is part of the layout and what
is a module.

In taking a look at the Shopify website, there are patterns that oc-
cur in the vast majority of websites. For example, there is a header,
a main content area, a sidebar, and a footer.

Scalable and Modular Architecture for CSS 13

In your head, imagine what the HTML would look like. It’s likely to
be a set of divs. Maybe you’re using HTML5 and starting to use

header and footer elements. In either case, you probably would

give each of the containers an ID.

Our CSS structure might look something like this:

#header { … }
#sidebar { … }
#maincontent { … }

<div id="header"></div>
<div id="sidebar"></div>
<div id="maincontent"></div>

That was straightforward and I’m sure you are thinking, “Really?
You’re showing me how to do this?!” Let’s take a look at another
part of the page.

14 Scalable and Modular Architecture for CSS

Taking a look at the Features section, we see a grid of items. Shopi-
fy’s markup is a container div with a series of child divs. An unor-

dered list may also be a useful way to mark up these items, which is
what I will use for this example.

Example HTML code for the Features section layout

<div>
<h2>Features</h2>

…
…
…

</div>

Scalable and Modular Architecture for CSS 15

Without considering the SMACSS approach to this, we might be in-
clined to add an ID of features to the surrounding DIV and then

style up the contents from there.

A possible approach to styling the list of featured items

div#featured ul {
margin: 0;
padding: 0;
list-style-type: none;

}

div#featured li {
float: left;
height: 100px;
margin-left: 10px;

}

There are some assumptions that we make with this approach:

1. There will only ever be one features grid on the page
2. List items are floated to the left
3. List items have a height of 100 pixels

These may be reasonable assumptions to make. This is a prime ex-
ample of where a small site can get away with this structure: it is
unlikely to change and it is unlikely to become more complex than
it already is. Maybe. Larger sites with a higher rate of change just
have a higher chance of refactoring a component within the page
and needing to readdress the styling that goes with it.

Looking back at the code example, there are definitely some opti-
mizations that could be made. The ID selector didn’t need to be
qualified with a tag selector and since the list is a direct descendant
of the div, the child selector (>) could’ve been used.

Let’s take a look at how this could be readdressed to give us some
more flexibility.

16 Scalable and Modular Architecture for CSS

From a layout perspective, all we care about is how each item re-
lates to each other. We don’t necessarily care about the design of
the modules themselves nor do we want to have to worry about the
context that this layout sits within.

Grid Module applied to OL or UL.

.l-grid {
margin: 0;
padding: 0;
list-style-type: none;

}

.l-grid > li {
display: inline-block;
margin: 0 0 10px 10px;

/* IE7 hack to mimic inline-block on block
elements */

*display: inline;
*zoom: 1;

}

What problems were solved with this approach and what problems
did we introduce? (Very rarely does any solution solve 100% of the
problem.)

1. The grid layout can now be applied to any container to
create a float-style layout

2. We have decreased the depth of applicability by 1 (See the
chapter on Depth of Applicability for more on that)

3. We have reduced the specificity of the selectors
4. The height requirement has been removed. A particular

row will grow to the height of the tallest item in that row.

On the flip-side, how did we make things worse?

1. By using a child selector, we are locking out IE6. (We
could get around this by avoiding the child selector.)

2. The CSS has increased in size and in complexity.

Scalable and Modular Architecture for CSS 17

The increase in size can’t be disputed but it is nominal. Now that we
have this reusable module, we can apply it throughout the site
without code duplication. The increase in complexity is also nomi-
nal. We did have to work around outdated browsers and thrown in
hacks that may be frowned upon by some. However, the selectors
are less complex which allow us to extend this layout while still
minimizing the impact of specificity.

18 Scalable and Modular Architecture for CSS

Module Rules

As briefly mentioned in the previous section, a Module is a more
discrete component of the page. It is your navigation bars and your
carousels and your dialogs and your widgets and so on. This is the
meat of the page. Modules sit inside Layout components. Modules
can sometimes sit within other Modules, too. Each Module should
be designed to exist as a standalone component. In doing so, the
page will be more flexible. If done right, Modules can easily be
moved to different parts of the layout without breaking.

When defining the rule set for a module, avoid using IDs and ele-
ment selectors, sticking only to class names. A module will likely
contain a number of elements and there is likely to be a desire to
use descendent or child selectors to target those elements.

Module example

.module > h2 {
padding: 5px;

}

.module span {
padding: 5px;

}

Avoid element selectors

Use child or descendant selectors with element selectors if the ele-
ment selectors will and can be predictable. Using .module span is

great if a span will predictably be used and styled the same way
every time while within that module.

Scalable and Modular Architecture for CSS 19

Styling with generic element

<div class="fld">
Folder Name

</div>

/* The Folder Module */
.fld > span {

padding-left: 20px;
background: url(icon.png);

}

The problem is that as a project grows in complexity, the more like-
ly that you will need to expand a component’s functionality and the
more limited you will be in having used such a generic element
within your rule.

Styling with generic element

<div class="fld">
Folder Name
(32 items)

</div>

Now we are in a pickle. We don’t want the icon to appear on both
elements within our folder module. Which leads me to my next
point:

Only include a selector that includes semantics. A span or div holds
none. A heading has some. A class defined on an element has plen-
ty.

Styling with generic element

<div class="fld">
Folder Name
(32 items)

</div>

20 Scalable and Modular Architecture for CSS

By adding the classes to the elements, we have increased the se-
mantics of what those elements mean and removed any ambiguity
when it comes to styling them.

If you do wish to use an element selector, it should be within one
level of a class selector. In other words, you should be in a situation
to use child selectors. Alternatively, you should be extremely confi-
dent that the element in question will not be confused with another
element. The more semantically generic the HTML element (like a
span or div), the more likely it will create a conflict down the road.
Elements with greater semantics like headings are more likely to
appear by themselves within a container and you are more likely
able to use an element selector successfully.

New Contexts

Using the module approach also allows us to better understand
where context changes are likely to occur. The need for a new posi-
tioning context, for example, is likely to happen at either the layout
level or at the root of a module.

Subclassing Modules

When we have the same module in different sections, the first in-
stinct is to use a parent element to style that module differently.

Subclassing

.pod {
width: 100%;

}
.pod input[type=text] {

width: 50%;
}
#sidebar .pod input[type=text] {

width: 100%;
}

Scalable and Modular Architecture for CSS 21

The problem with this approach is that you can run into specificity
issues that require adding even more selectors to battle against it
or to quickly fall back to using !important.

Expanding on our example pod, we have an input with two differ-
ent widths. Throughout the site, the input has a label beside it and
therefore the field should only be half the width. In the sidebar,
however, the field would be too small so we increase it to 100% and
have the label on top. All looks well and good. Now, we need to add
a new component to our page. It uses most of the same styling as a
.pod and so we re-use that class. However, this pod is special and

has a constrained width no matter where it is on the site. It is a lit-
tle different, though, and needs a width of 180px.

Battling against specificity

.pod {
width: 100%;

}
.pod input[type=text] {

width: 50%;
}
#sidebar .pod input[type=text] {

width: 100%;
}

.pod-callout {
width: 200px;

}
#sidebar .pod-callout input[type=text],
.pod-callout input[type=text] {

width: 180px;
}

We are doubling up on our selectors to be able to override the
specificity of #sidebar.

What we should do instead is recognize that the constrained layout
in the sidebar is a subclass of the pod and style it accordingly.

22 Scalable and Modular Architecture for CSS

Battling against specificity

.pod {
width: 100%;

}
.pod input[type=text] {

width: 50%;
}
.pod-constrained input[type=text] {

width: 100%;
}

.pod-callout {
width: 200px;

}
.pod-callout input[type=text] {

width: 180px;
}

With sub-classing the module, both the base module and the sub-
module class names get applied to the HTML element.

Sub-module class name in HTML

<div class="pod pod-constrained">...</div>
<div class="pod pod-callout">...</div>

Try to avoid conditional styling based on location. If you are chang-
ing the look of a module for usage elsewhere on the page or site,
sub-class the module instead.

To help battle against specificity (and if IE6 isn’t a concern), then
you can double up on your class names like in the next example.

Subclassing

.pod.pod-callout { }

<!-- In the HTML -->
<div class="pod pod-callout"> ... </div>

Scalable and Modular Architecture for CSS 23

You may be concerned about this, depending on the order of load-
ing. For example, on Yahoo! Mail, we have code coming from differ-
ent places. We had our base button styles and then we had a spe-
cial set of buttons for the compose screen. However, when you
clicked to add a contact to your address book, it loaded a compo-
nent from a different product: Address Book. (Yes, the address book
is a different product within Yahoo!.) The address book loaded its
own base button styles, thereby overwriting the sub-classed button
styles that we had.

If load order is a factor in your project, watch out for specificity is-
sues.

While more specific layout components assigned with IDs could be
used to provide specialized styling for modules, sub-classing the
module will allow the module to be moved to other sections of the
site more easily and you will avoid increasing the specificity unnec-
essarily.

24 Scalable and Modular Architecture for CSS

State Rules

A state is something that augments and overrides all other styles.
For example, an accordion section may be in a collapsed or expand-
ed state. A message may be in a success or error state.

States are generally applied to the same element as a layout rule or
applied to the same element as a base module class.

State applied to an element

<div id="header" class="is-collapsed">
<form>

<div class="msg is-error">
There is an error!

</div>
<label for="searchbox"

class="is-hidden">Search</label>
<input type="search" id="searchbox">

</form>
</div>

The header element just has an ID. As such we can assume that any
styles, if there are any, on this element are for layout purposes and
that the is-collapsed represents a collapsed state. One might

presume that without this state rule, the default is an expanded
state.

The msg module is simple enough and has an error state applied to

it. One could imagine a success state could be applied to the mes-
sage, alternatively.

Finally, the field label has a hidden state applied to hide it from
sight but still keep it for screen readers. In this case, we are actually

Scalable and Modular Architecture for CSS 25

applying the state to a base element and not overriding a layout or
module.

Isnʼ̓t it just a module?

There is plenty of similarity between a sub-module style and a
state style. They both modify the existing look of an element. How-
ever, they differ in two key ways:

1. State styles can apply to layout and/or module styles;
and

2. State styles indicate a JavaScript dependency.

It is this second point that is the most important distinction. Sub-
module styles are applied to an element at render time and then
are never changed again. State styles, however, are applied to ele-
ments to indicate a change in state while the page is still running
on the client machine.

For example, clicking on a tab will activate that tab. Therefore, an
is-active or is-tab-active class is appropriate. Clicking on a

dialog close button will hide the dialog. Therefore, an is-hidden

class is appropriate.

Using !important

States should be made to stand alone and are usually built of a sin-
gle class selector.

Since the state will likely need to override the style of a more com-
plex rule set, the use of !important is allowed and, dare I say, rec-

ommended. (I used to say that !important was never needed but

on complex systems, it is often a necessity.) You won’t normally
have two states applied to the same module or two states that tend
to affect the same set of styles, so specificity conflicts from using
!important should be few and far between.

26 Scalable and Modular Architecture for CSS

With that said, be cautious. Leave !important off until you actu-

ally and truly need it (and you will see why in this next example).
Remember, the use of !important should be avoided for all other

rule types. Only states should have it.

Combining State Rules with Modules

Inevitably, a state rule will not be able to rely on inheritance to ap-
ply its style in the right place. Sometimes a state is very specific to a
particular module where styling is very unique.

In a case where a state rule is made for a specific module, the state
class name should include the module name in it. The state rule
should also reside with the module rules and not with the rest of
the global state rules.

State rules for modules

.tab {
background-color: purple;
color: white;

}

.is-tab-active {
background-color: white;
color: black;

}

If you are doing just-in-time loading of your CSS, generic states
should be considered part of the base and global styles and loaded
on initial page load. The styles for a particular module wonʼt need
to be loaded until that particular module is loaded.

Scalable and Modular Architecture for CSS 27

Theme Rules

Theme Rules aren’t used as often within a project and because of
that I was quite reluctant to include them as their own category.
Some projects do have a need for them, though, as we did when
working on Yahoo! Mail.

It is probably self-evident but a theme defines colours and images
that give your application or site its look and feel. Separating the
theme out into its own set of styles allows for those styles to be eas-
ily redefined for alternate themes. The need for theming within a
project is necessary when you want the user to receive an alternate
skin that provides some cosmetic alterations.

For example, your site may have different colours for different sec-
tions of the site. Or you may allow users to customize the colour
based on a user preference. Or you may need to provide themes
based on locale such as country or language.

Themes

Themes can affect any of the primary types. They can override base
styles like default link colours. They can change module elements
such as colours and borders. They can affect layout with different
arrangements. They can also alter how states look.

Let’s say you have a dialog module that needs to have a border
colour of blue, the border itself would be initially defined in the
module and then the theme defines the colour:

28 Scalable and Modular Architecture for CSS

Module Theming

/* in module-name.css */
.mod {

border: 1px solid;
}

/* in theme.css */
.mod {

border-color: blue;
}

Depending on how extensive the theming is, it may be easier to de-
fine theme-specific classes. In the case of Yahoo! Mail, we kept the
theming to specific regions of the page. This made it easier for us to
build new themes without sacrificing the overall design balanced
with still giving the user some customization.

For more extensive theming, using a theme- prefix for specific

theme components will make it easier to apply them to more ele-
ments on the page.

Theme Classes

/* in theme.css */
.theme-border {

border-color: purple;
}

.theme-background {
background: linear-gradient(...);

}

At Yahoo! Mail, to help with maintaining consistency across all of
our theme files—they have over 50—we used a Mustache template
for our CSS that allowed us to specify a number of colour values, a
background image, and create a final CSS file for production.

Scalable and Modular Architecture for CSS 29

Typography

As a facet of theming, there are times when you need to redefine
the fonts that are being used on a wholesale basis, such as with in-
ternationalization. Locales such as China and Korea have complex
ideograms that are difficult to read at smaller font sizes. As a re-
sult, defining specific rules to isolate font styles makes it easier to
change font size across multiple components.

Font rules will normally affect base, module and state styles. Font
styles won’t normally be specified at the layout level as layouts are
intended for positioning and placement, not for stylistic changes
like fonts and colours.

Like theme files, there may not be need to define actual font classes
(like font-large). If you do, your site should only have 3 to 6 dif-

ferent font-sizes. If you have more than 6 font sizes declared in
your project, your users will likely not notice and are making the
site harder for you to maintain.

What’s in a name

Naming theme and typography classes are usually the hardest to
feel comfortable with because we’re in an industry that considers
them unsemantic. In the case of theme components, they’re inher-
ently visual and unsemantic. In the case of typography, though,
this isn’t really the case. Design is about visual hierarchy afterall,
and your typography should reflect that. Therefore, the naming
convention you end up using should indicate the various levels of
importance, just as you would with heading levels in HTML.

30 Scalable and Modular Architecture for CSS

Changing State

You’ve got a Photoshop document open in front of you and you
have been told to turn it into the magic that is HTML and CSS (with
maybe a little JavaScript thrown in for good measure).

It may seem straightforward to start mapping things directly from
the composition to the code. However, various components on your
page are likely to need to be represented in various states. There is
the default state that something should appear in and then what it
should look like when the state changes.

What is a state change?

State changes are represented in one of three ways:

1. class name
2. pseudo-class
3. media query

A class name change happens with JavaScript. Via some interac-
tion, be it moving the mouse around, hitting something on the
keyboard, or some other event occurring. An element gets a new
class applied and then the visual appearance changes.

A pseudo-class change is done via any number of pseudo-classes,
and there are a lot. In these cases, we no longer have to rely on
JavaScript to describe the state change. Pseudo-classes are still lim-
ited in that we can only style changes to elements that are descen-
dants or siblings of the element in which the pseudo-class applies.
Otherwise, we are back to using JavaScript.

Scalable and Modular Architecture for CSS 31

Lastly, media queries describe how things should by styled under
defined criteria, such as different viewport sizes.

With a module-based system, it is important to consider state-
based design as applied to each of the modules. When you actively
ask yourself, “what is the default state,” then you’ll find yourself
thinking proactively about progressive enhancement. It also can
have you approaching issues slightly differently.

Change via Class Name

For the most part, class name changes are straightforward. These
are applied to elements that take on a different state. For example,
a user clicks on a disclosure icon to show and hide an element on
the page.

JavaScript changing state via class name

// with jQuery
$('.btn-close').click(function(){

$(this).parents('.dialog').addClass('is-hidden');
})

The jQuery example adds a click event handler to every element
with the btn-close class name. When the user clicks on the but-

ton, it takes the event source and works up the DOM tree to find the
ancestor element with the class of dialog on it. Then it applies the

is-hidden state class.

Other times, a state change has a greater impact.

A common interface design pattern is that of a button being
pressed and displaying a menu. In this case, the menu changes to a
pressed state and the menu changes to a visible state. What op-
tions do we have for handling this change? It depends heavily on
your HTML structure. For example, at Yahoo!, menus get loaded at

32 Scalable and Modular Architecture for CSS

request time and are, therefore, inserted at the top of the DOM. We
had used a naming convention to hook the two together.

Button and menu in separate parts of the same document

<div id="content">
<div class="toolbar">

<button id="btn-new" class="btn"
data-action="menu">New</button>

</div>
</div>
<div id="menu-new" class="menu">

 ...
</div>

The data-action tied into a JavaScript click call that said, "hey, you
want to load a menu." It would take the button ID and find the
menu that matched. This is how it might work with jQuery:

Loading Menu with jQuery

// bind a click handler to the button
$('#btn-new').click(function(){

// wrap the clicked button in jQuery
var el = $(this);

// change the state of the button
el.addClass('is-pressed');

// find the menu by stripping btn- and
// adding it to menu selector
$('#menu-' +

el.id.substr(4)).removeClass('is-hidden');
});

As this illustrates, the state change for a single item is modified on
two different items in two different places via JavaScript.

But what if the menu actually resided right next to the button?

Scalable and Modular Architecture for CSS 33

Button and menu in the same part of the document

<div id="content">
<div class="toolbar">

<button id="btn-new" class="btn"
data-action="menu">New</button>

<div id="menu-new" class="menu">
 ...

</div>
</div>

</div>

The previous code would work exactly the same and could definitely
stay the same. However, we have alternatives. Your first instinct
might be to add a class to a parent element and style the button
and menu from there.

Adding a class to parent element to style child elements

<div id="content">
<div class="toolbar is-active">

<button id="btn-new" class="btn"
data-action="menu">New</button>

<div id="menu-new" class="menu">
 ...

</div>
</div>

</div>

/* CSS for styling */

.is-active .btn { color: #000; }

.is-active .menu { display: block; }

The problem with this approach is that this HTML structure is now
tied together. There must be a containing element. The menu and
button must exist within that containing element. Let’s hope we
don’t need to add any more buttons into that toolbar!

Another approach to this is to apply the active class to the button
as we did before and use the sibling selector to activate the menu.

34 Scalable and Modular Architecture for CSS

Activating the menu with a sibling selector

<div id="content">
<div class="toolbar">

<button id="btn-new" class="btn is-active"
data-action="menu">New</button>

<div id="menu-new" class="menu">
 ...

</div>
</div>

</div>

/* CSS for styling */

.btn.is-active { color: #000; }

.btn.is-active + .menu { display: block; }

I prefer this approach over applying a state class to a parent ele-
ment as the state is more accurately combined with the module in
which it applies. It still has the dependency of tying the menu
HTML with the button HTML: one has to come immediately after
the other. If you can establish that consistency in your project then
this is an approach that can work well for you.

Why parent and sibling states are problematic

The reason why this approach can be more troublesome over just
applying a state to each module is that it is no longer clear where
this rule set should go. The menu is no longer just a menu. It’s a
button menu. If you needed to modify the active state for this
module, do you find the CSS in with the button CSS or is it in with
the menu CSS?

All that to say that applying a state to each button is the preferred
approach. You’re creating a better separation between the mod-
ules, making your site easier to test, develop, and scale.

Scalable and Modular Architecture for CSS 35

Handling State Change with Attribute Selectors

Depending on your browser support, you can also take advantage
of attribute selectors to handle state change. This can be useful for:

• isolating states from layout and module classes
• allowing easier transitions between multiple states

Let’s take a look at an example of a button that can be in multiple
states such as default, pressed or disabled.

You may choose to use a sub-module naming convention.

Sub-module naming convention

.btn { color: #333; }

.btn-pressed { color: #000; }

.btn-disabled { opacity: .5; pointer-events: none; }

If a button needs to be toggled between states then it might make
more sense to use a state naming convention.

State naming convention

.btn { color: #333; }

.is-pressed { color: #000; }

.is-disabled { opacity: .5; pointer-events: none; }

I like the comparison between these two examples because it high-
lights that SMACSS is often about clarity and naming convention. I
would be happy to see either of these two examples within a pro-
ject. Now let’s take a look at another approach: attribute selectors.

36 Scalable and Modular Architecture for CSS

Attribute selectors convention

.btn[data-state=default] { color: #333; }

.btn[data-state=pressed] { color: #000; }

.btn[data-state=disabled] { opacity: .5;
pointer-events: none; }

<!-- HTML -->
<button class="btn"
data-state="disabled">Disabled</button>

The data- prefix on the attribute is part of the HTML5 specifica-

tion that allows you to make up attribute names and place them
within the data namespace so as not to conflict with future HTML
attribute specifications. Changing the state of a button doesn’t re-
quire removing classes and adding classes. It just requires changing
the value of a single attribute.

Changing State with jQuery

// bind a click handler to each button
$(".btn").bind("click", function(){

// change the state to pressed
$(this).attr('data-state', 'pressed');

});

Admittedly, with JavaScript libraries like jQuery, manipulating
classes for state management isn’t complicated. jQuery has meth-
ods like hasClass, addClass, and toggleClass that make

working with class names really easy.

Suffice it to say, you have plenty of choices in the way you can rep-
resent state.

Class-based State Change with CSS Animations

Animations are an interesting beast and some may argue that it is
defining behaviour in a layer where it shouldn’t be defined. CSS is
for styling, after all. JavaScript is for behaviour.

Scalable and Modular Architecture for CSS 37

The distinction here is to understand that CSS defines a visual
state. We can use JavaScript to switch the state of an element on
our page. JavaScript should not be used to describe the state,
though. That is, it shouldn’t be used to add inline styles.

Historically, we have used JavaScript to create animation because it
was the only way we had available to do so (HTML+TIME2 notwith-
standing).

When we think of things in these terms, it can help shape how we
approach various situations. For example, it wouldn’t be unusual to
have a message appear on the page for a short period of time and
then fade out.

JavaScript handling state change

function showMessage (s) {
var el = document.getElementById('message');
el.innerHTML = s;

/* set state */
el.className = 'is-visible';
setTimeout(function(){

/* set state back */
el.className = 'is-hidden';

}, 3000);
}

The message state changes from hidden to visible and back to hid-
den again. The JavaScript handles the changes in these states and
then CSS can be used to animate between these—using either CSS
transitions or animations.

2.http://www.w3.org/TR/NOTE-HTMLplusTIME

38 Scalable and Modular Architecture for CSS

http://www.w3.org/TR/NOTE-HTMLplusTIME
http://www.w3.org/TR/NOTE-HTMLplusTIME
http://www.w3.org/TR/NOTE-HTMLplusTIME
http://www.w3.org/TR/NOTE-HTMLplusTIME

CSS handling the transition

@keyframes fade {
0% { opacity:0; display:block; }

100% { opacity:1; display:block; }
}

.is-visible {
display: block;
animation: fade 2s;

}

.is-hidden {
display: none;
animation: fade 2s reverse;

}

I admit, this last example wouldn’t actually work. Unfortunately,
the current browser implementations won’t allow for us to specify
non-animatable properties in our animation. Thankfully, browser
implementations are in the midst of getting update to more recent
CSS3 Animation recommendations. In the meantime, we need to do
something like the following.

Scalable and Modular Architecture for CSS 39

Animations in current browsers

@-webkit-keyframes fade {
0% { opacity:0; }

100% { opacity:1; display:block; }
}

.is-visible {
opacity: 1;
animation: fade 2s;

}

.is-hidden {
opacity: 0;
animation: fade 2s reverse;

}

.is-removed {
display: none;

}

/* and then our javascript */
function showMessage (s) {

var el = document.getElementById('message');
el.innerHTML = s;

/* set state */
el.className = 'is-visible';
setTimeout(function(){

/* set state back */
el.className = 'is-hidden';
setTimeout(function(){

el.className = 'is-removed';
}, 2000);

}, 3000);
}

In this case, I’ve changed it to still do the animation but then to use
JavaScript to remove the element from flow after the animation
should be done.

In this way, we maintain the separation between style (aka state)
and behaviour.

40 Scalable and Modular Architecture for CSS

Change via Pseudo-class

As we’ve just seen, we can use classes and attributes to handle
defining state changes on a module. However, CSS offers up plenty
of pseudo-classes that can also help us manage states and state
change.

From CSS2.1, the three most useful pseudo-classes are the "dynam-
ic" ones that react to user interaction: :hover, :focus, and :ac-

tive. CSS3 adds a number of new pseudo-classes, most of which

style based on HTML structure (such as :nth-child or :last-

child). There are a number of UI pseudo-classes in CSS3 that can

respond to form interactions, which can also be quite handy.

The default state for a module is normally defined without a
pseudo-class. Define the pseudo-classes as a secondary state of the
module.

Defining States with pseudo-classes

.btn {
background-color: #333; /* gray */

}

.btn:hover {
background-color: #336; /* blueish */

}

.btn:focus {
/* blueish focus ring */
box-shadow: 0 0 3px rgba(48,48,96,.3);

}

As modules are sub-classed, it can potentially get complicated as
you may need to design pseudo-class states for the sub-modules,
as well.

Scalable and Modular Architecture for CSS 41

Defining sub-module States with pseudo-classes

.btn {
background-color: #333; /* gray */

}

.btn:hover {
background-color: #336; /* blueish */

}

.btn:focus {
/* blueish focus ring */
box-shadow: 0 0 3px rgba(48,48,96,.3);

}

/* a default button state is the default choice
* from a selection of buttons
*/

.btn-default {
background-color: #DEDB12; /* yellowish */

}

.btn-default:hover {
background-color: #B8B50B; /* darker yellow */

}

/* no need to define a different focus state */

In this last code example, we have essentially created 5 variations
of a single module: a primary module, a sub-module, and then the
pseudo-class states that they could appear in. It can get even more
complicated when we introduce class-based states on top of each of
these.

42 Scalable and Modular Architecture for CSS

Modules, sub-modules, class states and pseudo-class states.
Oh my.

.btn { ... }

.btn:hover { ... }

.btn:focus { ... }

.btn-default { ... }

.btn-default:hover { ... }

.btn.is-pressed { ... }

.btn.is-pressed:hover { ... }

.btn-default.is-pressed { ... }

.btn-default.is-pressed:hover { ... }

Thankfully, few modules in your interface are going to need quite
this array of state management. However, it is clear that proper or-
ganization of your styles will ensure your project is easier to main-
tain.

Change via Media Query

While state changes via classes and pseudo-classes are fairly com-
monplace, media queries are fast becoming another approach to
managing state change—a way that has traditionally only been
possible with JavaScript. Adaptive design and Responsive Web De-
sign3 use media queries to react to various criteria. Print style
sheets were one of the first media queries that allowed us to define
how elements should look when printed on a page.

A media query can be defined as a separate style sheet using the
media attribute on the link element or it can be defined within a
@media block within a specific style sheet.

3.http://www.alistapart.com/articles/responsive-web-design/

Scalable and Modular Architecture for CSS 43

http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/
http://www.alistapart.com/articles/responsive-web-design/

Linking stylesheets

<link href="main.css" rel="stylesheet">
<link href="print.css" rel="stylesheet"
media="print">

/* inside main.css */
@media screen and (max-width: 400px) {

#content { float: none; }
}

Most examples of media queries define a break point and then
throw all styles that pertain to that particular break point and
place them inside.

With SMACSS, the intent is to keep the styles that pertain to a spe-
cific module with the rest of the module. That means that instead
of having a single break point, either in a main CSS file or in a sepa-
rate media query style sheet, place media queries around the mod-
ule states.

44 Scalable and Modular Architecture for CSS

Modular Media Queries

/* default state for nav items */
.nav > li {

float: left;
}

/* alternate state for nav items on small screens */
@media screen and (max-width: 400px) {

.nav > li { float: none; }
}

... elsewhere for layout ...

/* default layout */
.content {

float: left;
width: 75%;

}

.sidebar {
float: right;
width: 25%;

}

/* alternate state for layout on small screens */
@media screen and (max-width: 400px) {

.content, .sidebar {
float: none;
width: auto;

}
}

Yes, this does mean that the media query declaration may (and
likely will) get declared multiple times but it also allows for all in-
formation about a module to be kept together. Remember, keeping
the module information together (especially in its own CSS file) al-
lows for isolated testing of the module and (depending on how you
build your application) allows assets such as modularized tem-
plates and CSS to be loaded after the initial page has been loaded.

Scalable and Modular Architecture for CSS 45

It’s all about State

This chapter reviewed the three types of state change: class,
pseudo-class, and media query. Thinking about your interface not
only modularly but as a representation of those modules in various
states will make it easier to separate styles appropriately and build
sites that are easier to maintain.

46 Scalable and Modular Architecture for CSS

Depth of Applicability

When learning the inner workings of CSS, we learn that we have se-
lectors and that we use selectors to select the HTML elements on
the page that we want to style. CSS has grown over the years to give
us more power using an ever increasing number of selectors. Each
rule set that we add to our style sheet, however, creates an ever in-
creasing connection between the CSS and the HTML.

Let’s review a typical block of CSS that you might find on a website.

How we tightly couple our CSS to our HTML

#sidebar div {
border: 1px solid #333;

}

#sidebar div h3 {
margin-top: 5px;

}

#sidebar div ul {
margin-bottom: 5px;

}

By looking at this, you can see that there is some expectation of
what our HTML will look like. There is likely one or more sections in
a sidebar that have a heading and an unordered list that follows it.
If the site doesn’t change very often, this style of CSS will work just
fine. I haven’t changed the design of my blog in two years. My need
to scale just isn’t there. If I tried using this approach on a larger
site, which can change more frequently and have a greater variety
of code requirements, I am going to have problems. I will need to

Scalable and Modular Architecture for CSS 47

add more rules with more complex selectors. I may find myself in a
maintenance nightmare.

Where have I gone wrong? There are two particular concerns with
the example CSS:

1. I am relying heavily on a defined HTML structure.
2. The depth of HTML to which the selectors apply is too

deep.

Minimizing the Depth

HTML is like a tree structure of parents and children. The depth of
applicability is the number of generations that are affected by a
given rule. For example, body.article > #main > #content

> #intro > p > b would have a depth of applicability of 6 gen-

erations. If this selector was written as .article #intro b then

the depth is still the same: 6 generations.

The problem with such a depth is that it enforces a much greater
dependency on a particular HTML structure. Components on the
page can’t be easily moved around. If we look back at the sidebar
example, how do we recreate that module in another part of the
page such as a footer? We have to duplicate the rules.

Duplication of rules

#sidebar div, #footer div {
border: 1px solid #333;

}

#sidebar div h3, #footer div h3 {
margin-top: 5px;

}

#sidebar div ul, #footer div ul {
margin-bottom: 5px;

}

48 Scalable and Modular Architecture for CSS

The root node is at the div and it is from here that we should be

creating our styles.

Simplification of rules

.pod {
border: 1px solid #333;

}

.pod > h3 {
margin-top: 5px;

}

.pod > ul {
margin-bottom: 5px;

}

The pod is a container that still relies on a particular HTML struc-
ture but it is of a much shallower depth than what we had before.
The trade-off is that we have to repeat the pod class on numerous
elements on the page. Whereas before, we just had two elements
with IDs. Of course, we want to avoid going back to the days where
we did silly things like adding class names to every paragraph.

An advantage to using this shallow depth of applicability approach
is also the ability to more readily convert these modules into tem-
plates for dynamic content. At Yahoo!, for example, we’ve been re-
lying on Mustache for much of our template needs. Here is how we
would set up our template for these pods:

An example Mustache template

<div class="pod">
<h3>{{heading}}</h3>

{{#items}}
{{item}}
{{/items}}

</div>

Scalable and Modular Architecture for CSS 49

We are trying to strike a balance between maintenance, perfor-
mance, and readability. Going too deep may mean less “classitis”
within your HTML but it increases the maintenance and readability
overhead. Likewise, you don’t want (or need) classes on everything.
Adding classes to the h3 or ul in this example would have been a

little unnecessary unless we needed to have an even more flexible
system.

To go even further on this last example, this design pattern is a
common one. It is a container with a header and a body. (Some-
times, you will have a footer, too.) We have a ul in there right now

but in other examples, we might see an ol or a div in its place.

Once again, we can duplicate our rules for each variation.

Duplication of rules

.pod > ul, .pod > ol, .pod > div {
margin-bottom: 5px;

}

Alternatively, we can classify the pod body.

Simplifying with a class

.pod-body {
margin-bottom: 5px;

}

With the module rule approach, it is not even necessary to specify
the .pod class. We can visually see that .pod-body is associated

with the pod module and from a code perspective, it’ll work just
fine.

50 Scalable and Modular Architecture for CSS

An example Mustache template

<div class="pod">
<h3>{{heading}}</h3>
<ul class="pod-body">

{{#items}}
{{item}}
{{/items}}

</div>

As a result of this small change, we were able to reduce the depth of
applicability to the shallowest it can go. The single selector also
means that we are avoiding potential specificity issues, too. All
around, that is win-win.

Scalable and Modular Architecture for CSS 51

Selector Performance

With work, I have had to do quite a bit of examination of perfor-
mance. We run a number of tools over an application to determine
where the bottlenecks are. One such application is Google Page
Speed4 which provides a number of recommendations to improve
JavaScript and rendering performance. Before I get into its recom-
mendations, we need to understand a little better about how
browsers evaluate CSS.

How CSS gets evaluated

The style of an element is evaluated on element
creation

We often think of our pages as these full and complete documents
full of elements and content. However, browsers are designed to
handle documents like a stream. They begin to receive the docu-
ment from the server and can render the document before it has
completely downloaded. Each node is evaluated and rendered to
the viewport as it is received.

4.http://code.google.com/speed/page-speed/

52 Scalable and Modular Architecture for CSS

http://code.google.com/speed/page-speed/
http://code.google.com/speed/page-speed/
http://code.google.com/speed/page-speed/
http://code.google.com/speed/page-speed/
http://code.google.com/speed/page-speed/

An example HTML document

<body>
<div id="content">

<div class="module intro">
<p>Lorem Ipsum</p>

</div>
<div class="module">

<p>Lorem Ipsum</p>
<p>Lorem Ipsum</p>
<p>Lorem Ipsum Test</p>

</div>
</div>

</body>

The browser starts at the top and sees a body element. At this

point, it thinks it is empty. It hasn’t evaluated anything else. The
browser will determine what the computed styles are and apply
them to the element. What is the font, the color, the line height?
After it figures this out, it paints it to the screen.

Next, it sees a div element with an ID of content. Again, at this

point, it thinks it is empty. It hasn’t evaluated anything else. The
browser figures out the styles and then the div gets painted. The

browser will determine if it needs to repaint the body—did the ele-
ment get wider or taller? (I suspect there are other considerations
but width and height changes are the most common effects child
elements have on their parents.)

This process continues on until it reaches the end of the document.

For a visualization of the reflow/repaint process in Firefox, visit
http://youtu.be/ZTnIxIA5KGw.

CSS gets evaluated from right to left.

To determine whether a CSS rule applies to a particular element, it
starts from the right of the rule and works its way left.

Scalable and Modular Architecture for CSS 53

http://youtu.be/ZTnIxIA5KGw

If you have a rule like body div#content p { color:

#003366; } then for every element—as it gets rendered to the

page—it will first ask if it is a paragraph element. If it is then it will
work its way up the DOM and ask if it is a div with an ID of con-

tent. If it finds what it is looking for, it will continue its way up the
DOM until it reaches the body.

By working right to left, the browser can determine whether a rule
applies to this particular element that it is trying to paint to the
viewport much faster. To determine which rule is more or less per-
formant, you need to figure out how many nodes need to be evalu-
ated to determine whether a style can be applied to an element.

Which rules rule?

As each element gets rendered onto the page, it need to figure out
which styles should be applied. Now, take a look through the
Google Page Speed recommendations5. There are four main rules
that they consider inefficient:

• Rules with descendant selectors. E.g. #content h3

• Rules with child or adjacent selectors. E.g. #content >

h3

• Rules with overly qualified selectors. E.g. div#content

> h3

• Rules that apply :hover to non-link elements. E.g.

div#content:hover

What is important to note with these recommendations is that the
evaluation of any more than a single element to determine styling is
inefficient. That means that you could only ever use a single selector
in your rule: a class selector, an ID selector, an element selector, or
an attribute selector. If you take this recommendation at face val-
ue, they are suggesting we go back to the days of <p

5.http://code.google.com/speed/page-speed/docs/render-
ing.html#UseEfficientCSSSelectors

54 Scalable and Modular Architecture for CSS

http://code.google.com/speed/page-speed/docs/rendering.html#UseEfficientCSSSelectors
http://code.google.com/speed/page-speed/docs/rendering.html#UseEfficientCSSSelectors
http://code.google.com/speed/page-speed/docs/rendering.html#UseEfficientCSSSelectors
http://code.google.com/speed/page-speed/docs/rendering.html#UseEfficientCSSSelectors

class="bodytext">. (And if you look at the CSS that they gener-

ate on products like Search and Google Mail, they follow these rec-
ommendations.)

Constrain yourself, don’t choke yourself

For the rest of us, I believe that we can be a little more practical and
strike a balance between one end of the spectrum (adding classes
and identifiers to everything) and the other (using deep selector
rules creating tight coupling between HTML and CSS).

I follow three simple guidelines to help limit the number of ele-
ments that need to be evaluated:

1. Use child selectors
2. Avoid tag selectors for common elements
3. Use class names as the right-most selector

For example, .module h3 might be okay if I know I am only going

to have a dozen H3s on my page. How deep are my H3s in the DOM?
Are they 4 levels down (e.g.: html > body > #content > h3) or

are they 10 levels down (e.g.: html > body > #content > div

> div > … > h3)? Can I limit the DOM traversal using child se-

lectors? If I can do .module > h3 (sorry IE6), then I know for the

12 H3s I have on my page, it will only have to evaluate 24 elements.
If I do .module div, however, and I have 900 divs on my page (I

just loaded up my inbox in Yahoo! Mail and there are 903), then I
am going to have a lot more traversal. A simple <div><div><di-

v></div></div></div> (3 levels deep) results in 6 evaluations. It

is factorial. 4 levels deep results is 24. 5 levels deep results is 120.

With all that said, even these simple optimizations may be overkill.
Steve Souders, who works tirelessly on performance testing, exam-
ined the performance impact of CSS selectors6 and determined
(back in 2009) that the delta between the best case and the worst

6.http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-
selectors/

Scalable and Modular Architecture for CSS 55

http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/
http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/
http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/
http://www.stevesouders.com/blog/2009/03/10/performance-impact-of-css-selectors/

case was 50ms. In other words, consider selector performance but
don’t waste too much time on it.

56 Scalable and Modular Architecture for CSS

HTML5 and SMACSS

As it turns out, it works just as well with HTML5 as it does with
HTML4 or any other HTML you might be using with your CSS. That
is because the SMACSS approach has two core goals:

1. Increase the semantic value of a section of HTML and
content

2. Decrease the expectation of a specific HTML structure

HTML5 introduces a number of new elements which can help us in-
crease the semantic value of a section of HTML and content. Tags
like section, header, and aside are more descriptive than a

simple div. We have new input types that allow us to differentiate

a numeric field from a date field from a text field. The extra tags
and attributes have allowed us to be more descriptive. That is a
good thing.

But even with our new tags to play with, the tags are not necessari-
ly (or very likely) going to describe a very specific module on the
page. Is a nav element always going to contain the exact same type

and style of navigation?

<nav> implementation

<nav class="nav-primary">
<h1>Primary Navigation</h1>
…

</nav>

<nav class="nav-secondary">
<h1>External Links</h1>
…

</nav>

Scalable and Modular Architecture for CSS 57

The primary navigation uses a horizontal navigation along the top
of the page but the secondary navigation (for a sidebar, for exam-
ple) lists items vertically. The class names provide differentiation
between the types.

Class names help describe our content in very specific ways—ways
that are more specific than even HTML5 can provide. This serves
our first goal of increasing the semantic value of a section of HTML.

Your first instinct might be to do something like the following:

<nav> CSS

nav.nav-primary li {
display: inline-block;

}

nav.nav-secondary li {
display: block;

}

In doing so, we have indicated that these classes may only be used
on nav elements. If our code was never going to change, this would

be okay. However, the intention of this book is to describe scalable
projects, so let us look at an example of how things might change
on this project.

Our primary navigation is only a single level but the client comes
back and says we need to add drop down menus to every element.
Our HTML structure changes.

58 Scalable and Modular Architecture for CSS

<nav> implementation

<nav class="nav-primary">
<h1>Primary Navigation</h1>

About Us

Team
Location

</nav>

With this sub-navigation, how do we style the items such that they
are listed vertically and not horizontally?

With the CSS that we already have, we would have to add a <nav

class="nav-secondary"> around each of the inner unordered

lists to get the style that we want.

We can augment the CSS to target the inner list items.

Augmented <nav> CSS

nav.nav-primary li {
display: inline-block;

}

nav.nav-secondary li,
nav.nav-primary li li {

display: block;
}

Another alternative is to remove the need for a nav element to ap-

ply our class to, which works towards our secondary goal of de-
creasing the expectation of specific HTML.

Scalable and Modular Architecture for CSS 59

SMACSS-style <nav> CSS

.l-inline li {
display: inline-block;

}

.l-stacked li {
display: block;

}

In this case, we have switched to indicate that these are Layout
rules, since we are impacting how the individual modules (the list
items) are to be contained. The .l-stacked class can be applied

to the sub-navigation ul. This will create the result that we desire.

Specifying the list item as a required child element still binds the
Layout rules to specific HTML elements. There are certainly multi-
ple ways to skin a cat, as the saying goes. For example, you might
wish to say that all child elements will take on that style.

SMACSS-style <nav> CSS

.l-inline > * {
display: inline-block;

}

.l-stacked > * {
display: block;

}

The downfall to this approach is that the rules will have to be eval-
uated for every single element on the page and not just the list
items. The targeting of just direct descendants avoids too much
traversal. This lets us use the inline and stacked classes on pretty
much any element where we want the child elements to take on
those styles.

60 Scalable and Modular Architecture for CSS

<nav> implementation

<nav class="l-inline">
<h1>Primary Navigation</h1>

About Us
<ul class="l-stacked">

Team
Location

</nav>

Even with just this rather straightforward example, we managed to
keep our CSS simple and avoided making our selectors more com-
plex. The HTML is still understandable.

Remember the two goals: increase semantics and decrease reliance
on specific HTML.

Scalable and Modular Architecture for CSS 61

Prototyping

Good programmers like patterns. Good designers like patterns, too.
Patterns establish familiarity and encourage re-use. SMACSS is
about identifying the patterns in your design and codifying them.

A prototype should assist in viewing components in part or in
whole and to allow the codification of the design language into
building blocks. The web design industry likes reusable components
and can be seen in many of the frameworks like Bootstrap7 (for a
variety of site components) and 960.gs8 (for layout grids).

At Yahoo!, the prototyping team creates these building blocks and
use them for production. This allowed for greater consistency
across multiple products since they were all based on exactly the
same foundation.

Goals of a prototype

A prototype can serve multiple goals:

• show states
• review localization
• isolate dependencies

States

From the default state to collapsed states to error states to whatev-
er states you have defined, it is important to be able to visualize

7.http://twitter.github.com/bootstrap/
8.http://960.gs/

62 Scalable and Modular Architecture for CSS

http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://960.gs/
http://960.gs/
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://960.gs/
http://960.gs/

each of these states and make sure that the module is built accu-
rately.

If a module is data-driven then real or mock data can be used with-
in your prototype to test that it will render correctly.

Localization

For projects that need to support multiple locales, it will be valu-
able to be able to test modules using strings from the different lo-
cales to ensure layouts don’t break as a result.

Dependencies

Lastly, it is important to isolate dependencies. What CSS and
JavaScript dependencies are required to render a module correctly?
In larger projects where lazy loading is used, being able to isolate
dependencies to the bare minimum required means that you have
built a module effectively and can integrate that module into the
site without negatively impacting other modules on the page.

At Yahoo!, modules are isolated into individual CSS files and are
bundled using a combo handler when needed. For example, when
the inbox loads, it combines CSS files together for buttons, message
list, sidebar, tabs, and the header. The moment the user requests
the Search page, the combo handler combines search-specific styles
and delivers them over the pipe. Search uses a variation of the de-
fault message list and sidebar which means it only has to load the
sub-classed modules.

Pieces of the puzzle

At Yahoo!, we built a prototyping engine to help facilitate this
process. Whether you need something similar will depend on the
size of your project.

Scalable and Modular Architecture for CSS 63

The prototype engine uses a mustache template9 as the root. Mock
data is stored in a JSON file, localization strings are stored in key/
value pairs in a text file, and CSS and JavaScript dependencies are
pulled in as needed. This allows the team to view a menu or a dia-
log or a form by itself or in the context of the entire site. In doing
so, everybody can review functionality and design before going into
engineering. We can also shift assets to engineering knowing that
integration will be more seamless as a result.

The Yahoo! Prototype Engine

In the case of our prototype engine, some state management is
handled before the module gets rendered. This handles conditional
items, data filtering and anything else that might normally be han-
dled via server-side processing. State management isn’t always just
a case of applying a class name to an HTML element.

Your Prototype

Having a full-blown engine to compile your modules could very well
be unnecessary, especially for a small site. It is still advantageous
to isolate your components into an easy-to-review format.
MailChimp, for example, has an internal cheat sheet of design pat-
terns10 that they use to build the site. This documents various mod-
ules that are used throughout the site and the code required for
each module.

9.http://mustache.github.com/
10.http://www.flickr.com/photos/aarronwalter/5579386649/

64 Scalable and Modular Architecture for CSS

http://mustache.github.com/
http://mustache.github.com/
http://www.flickr.com/photos/aarronwalter/5579386649/
http://www.flickr.com/photos/aarronwalter/5579386649/
http://www.flickr.com/photos/aarronwalter/5579386649/
http://mustache.github.com/
http://mustache.github.com/
http://www.flickr.com/photos/aarronwalter/5579386649/
http://www.flickr.com/photos/aarronwalter/5579386649/

Remember, patterns are good. Codifying those patterns is also
good. Having a process in place to review and test those patterns is
great!

Scalable and Modular Architecture for CSS 65

Preprocessors

As great as CSS is, it is still missing features that many designers
and developers would like it to have. To help fill this void—and to
help speed up development—tools have been created to make our
lives easier.

One type of tool is the CSS preprocessor. I’ll review what a pre-
processor is, what it can do, and how it can help you in building
scalable and modular CSS.

What is a preprocessor?

A CSS preprocessor allows you to use a special syntax in your CSS
that is then compiled within your project. Some preprocessors try
and stick as closely as possible to actual CSS syntax, whereas others
try to simplify things as much as possible.

Take a look at this example for the Stylus11 preprocessor.

Coding using Stylus

@import 'vendor'

body
font 12px Helvetica, Arial, sans-serif

a.button
border-radius 5px

11.http://learnboost.github.com/stylus/

66 Scalable and Modular Architecture for CSS

http://learnboost.github.com/stylus/
http://learnboost.github.com/stylus/
http://learnboost.github.com/stylus/
http://learnboost.github.com/stylus/

For those who know Ruby12 or CoffeeScript13, this will feel familiar. It
strips out the need for curly braces and semi-colons and relies on
significant white space instead. The indentation indicates which
properties apply to which rules. Property names never have spaces
in them, which means that the first space after the property name
must separate the property from the value.

In addition to Stylus, the two preprocessors that currently lead the
market are Sass14 (or similarly, Compass15) and Less16.

Installing a preprocessor

One of the complaints, especially from designers not as familiar
with the command line, is that these preprocessor tools can be
complicated to install. Depending on your environment, they can
be. Or, it can be as simple as dragging an application into your Ap-
plications folder.

For installing Sass on a Mac, for example, I just hopped to the com-
mand line and typed:

Installing Sass

sudo gem install sass

Or installing Compass

sudo gem install compass

Gem17 is a command line tool from the Ruby world that acts as a
package manager for installing applications and is pre-installed on
recent versions of Mac OS X.

12.http://www.ruby-lang.org/en/
13.http://coffeescript.org/
14.http://sass-lang.com/
15.http://compass-style.org/
16.http://lesscss.org/
17.http://rubygems.org/

Scalable and Modular Architecture for CSS 67

http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://coffeescript.org/
http://coffeescript.org/
http://sass-lang.com/
http://sass-lang.com/
http://compass-style.org/
http://compass-style.org/
http://lesscss.org/
http://lesscss.org/
http://rubygems.org/
http://rubygems.org/
http://www.ruby-lang.org/en/
http://www.ruby-lang.org/en/
http://coffeescript.org/
http://coffeescript.org/
http://sass-lang.com/
http://sass-lang.com/
http://compass-style.org/
http://compass-style.org/
http://lesscss.org/
http://lesscss.org/
http://rubygems.org/
http://rubygems.org/

Once Sass is installed on my machine, I set Sass to watch a folder
that I’m working on.

Running Sass

sass --watch before:after

Where before is the folder where all my .scss (precompiled CSS

files) files are contained and after is where the post-compiled CSS

files are placed. Any changes I make to my .scss files in the be-

fore folder are automatically compiled and placed as .css files in

the after folder. This is handy for building and testing things

quickly during development. (An .scss file is like a regular .css

file but using the Sass syntax which I’ll explain later in this chap-
ter.)

There is also the Compass Mac app18 that avoids the need of doing
anything at the command line.

Less uses npm, the node package manager19, which isn’t pre-in-
stalled. Therefore, you’d need to install both the node package
manager and then Less after that. Less also has a JavaScript version
that can run client-side during the development process.

Less’ Client-side Implementation

<link rel="stylesheet/less" type="text/css"
href="styles.less">
<script src="less.js"></script>

Remember not to deploy this to a live site. Always compile the CSS
before launch.

18.http://compass.handlino.com/
19.https://github.com/isaacs/npm

68 Scalable and Modular Architecture for CSS

http://compass.handlino.com/
http://compass.handlino.com/
https://github.com/isaacs/npm
https://github.com/isaacs/npm
http://compass.handlino.com/
http://compass.handlino.com/
https://github.com/isaacs/npm
https://github.com/isaacs/npm

Less Command Line Compilation

lessc styles.less

Increasingly, site development is requiring command line tools.
They can be a handy way to streamline your process and even get
you out of a pickle that GUI tools sometimes can’t solve.

Useful features of a preprocessor

Preprocessors offer up plenty of interesting features that can help
make authoring CSS easier. A few of them are:

• Variables
• Operations
• Mixins
• Nesting
• Functions
• Interpolation
• File importing
• Extending

What does all that mean? Let’s look deeper at some of them. (I’ll be
using Sass for the examples moving forward but be aware that Less
and Stylus also have similar approaches for the same concepts.)

Variables

Anybody who has worked with CSS for more than an hour has likely
wished for the ability to set a colour value once in a CSS file and
then to re-use that colour anywhere else in the CSS. In Sass, you can
define a variable prefacing a word with $ and assigning it a value.

Scalable and Modular Architecture for CSS 69

Using Variables

$color: #369;

body {
color: $color;

}

.callout {
border-color: $color;

}

The compiler will then convert this into the final file for deploy-
ment.

Compiled Variables

body {
color: #369;

}

.callout {
border-color: #369;

}

This is very handy for keeping site-wide changes all in one place.
(Of note, the W3C is working on a draft specification of CSS Vari-
ables20.)

Nesting

When coding CSS, it’s quite common to have a selector chain.

20.http://dev.w3.org/csswg/css-variables/

70 Scalable and Modular Architecture for CSS

http://dev.w3.org/csswg/css-variables/
http://dev.w3.org/csswg/css-variables/
http://dev.w3.org/csswg/css-variables/
http://dev.w3.org/csswg/css-variables/
http://dev.w3.org/csswg/css-variables/

Selector Chains

.nav > li {
float: left;

}

.nav > li > a {
display: block;

}

Nesting allows these styles to be grouped more clearly in the pre-
compiled CSS file.

Nesting with Sass

.nav {
> li {

float: left;
> a {

display: block;
}

}
}

Each set of styles is nested inside the one above it. What does this
look like generated?

Generated CSS from Sass

.nav > li {
float: left; }
.nav > li > a {

display: block; }

The nesting helps clarify which styles are grouped with what ele-
ments but not much different than just indenting the styles on your
own. There is some saved typing from not having to type .nav

every time.

Scalable and Modular Architecture for CSS 71

Mixins

Mixins come with a lot of power. A mixin is a group of styles that
can be re-used throughout your CSS. They can take parameters that
customize the output of the mixin. One of the more common uses
for mixins is to handle vendor prefixes. (Although they can really be
used for any repetitive CSS rules.)

An Example Mixin for border-radius

@mixin border-radius($size) {
-webkit-border-radius: $size;

-moz-border-radius: $size;
border-radius: $size;

}

Once you’ve declared a mixin, you can then call it from anywhere
within your CSS using the include directive.

An Example Mixin for border-radius

.callout {
@include border-radius(5px);

}

The preprocessor will then compile that into this:

Generated CSS for the border-radius mixin

.callout {
-webkit-border-radius: 5px;

-moz-border-radius: 5px;
border-radius: 5px;

}

72 Scalable and Modular Architecture for CSS

Functions

The Mixins example already looks like a function. There is, however,
the ability to do some powerful stuff with calculating values. For
example, the lighten function takes a colour value and a percent-

age and will adjust the lightness of that value.

Adjusting colour value using a function

$btnColor: #036;
.btn {

background-color: $btnColor;
}
.btn:hover {

background-color: lighten($btnColor, 20%);
}

The preprocessor will then compile that into this:

Compiled CSS with colour functions

.btn {
background-color: #003366;

}
.btn:hover {

background-color: #0066cc;
}

Sass comes with a number of handy functions like this and Com-
pass adds even more. (If you’re going to use Sass, I highly recommend
taking advantage of Compass, too.)

Extensions

Extensions are the ability to extend one module with the properties
of another. In Sass, this is done with the extend directive.

Scalable and Modular Architecture for CSS 73

Sass Extensions

.btn {
display: block;
padding: 5px 10px;
background-color: #003366;

}
.btn-default {

@extend .btn;
background-color: #0066cc;

}

The extension takes the styles from btn and applies them to btn-

default. Sass is fairly smart, though. It doesn’t simply duplicate

the rules in the second declaration. It creates a combination selec-
tor for the first set of rules.

Compiled CSS from Sass Extensions

.btn, .btn-default {
display: block;
padding: 5px 10px;
background-color: #003366; }

.btn-default {
background-color: #0066cc; }

The extensions are limited to simple selectors. You couldn’t extend
#main .btn, for example. We will come back to discuss extensions

and how they impact the SMACSS approach later on in this chapter.

Even more

This is only the tip of the iceberg when it comes to preprocessors.
There are plenty of more features and examples on the respective
websites. It may seem daunting at first. Don’t feel the need to use
every feature right away.

74 Scalable and Modular Architecture for CSS

Getting into and out of trouble

You know the saying. “With great power comes great responsibili-
ty.” These preprocessors offer up lots of great functionality that can
keep your precompiled CSS files nice and lean. However, once com-
piled, the magic can result in bloated CSS that is difficult to debug.
In other words, you’re right back where you started. Bloated code is
a possibility no matter how you code—whether by hand, by a
WYSIWYG tool like Dreamweaver, or via a command line preproces-
sor. It’s also possible to create great code using any of these tools.

Let’s look at where we can get into trouble.

Deep Nesting

Once you start nesting, it can easily be taken too far. Imagine, if
you will, something like this:

Deep Nesting with Sass

#sidebar {
width: 300px;
.box {

border-radius: 10px;
background-color: #EEE;
h2 {

font-size: 14px;
font-weight: bold;

}
ul {

margin:0;
padding:0;
a {

display:block;
}

}
}

}

Scalable and Modular Architecture for CSS 75

That wouldn’t be unusual to see. I’ve seen this quite a bit in work-
ing on existing Sass files. Here is what that generates into:

Compiled CSS using Deep Nesting with Sass

#sidebar {
width: 300px; }
#sidebar .box {

border-radius: 10px;
background-color: #EEE; }
#sidebar .box h2 {

font-size: 14px;
font-weight: bold; }

#sidebar .box ul {
margin: 0;
padding: 0; }
#sidebar .box ul a {

display: block; }

Nesting with SMACSS

The SMACSS approach, by its very nature, minimizes deep nesting
due to depth of applicability. The separation of layout and modules
also avoids these issues. With SMACSS, the previous example would
look more like this:

76 Scalable and Modular Architecture for CSS

Deep Nesting with SMACSS

#sidebar {
width: 300px;

}

.box {
border-radius: 10px;
background-color: #EEE;

}

.box-header {
font-size: 14px;
font-weight: bold;

}

.box-body {
margin: 0;
padding: 0;
a {

display: block;
}

}

There’s barely any nesting at all! That’s because we don’t need long
selectors to get the styles that we want. It’s only when we need to
target element selectors in a part of the module where we really
need to worry about nesting.

Creating long selector chains just makes the browser work harder
than it needs to when determining whether a style applies to the
current element.

Unnecessary extending

Returning back to our extension example of a default button ex-
tending from default button styles, let us look at that code example
again.

Scalable and Modular Architecture for CSS 77

Sass extension of a button

.btn {
display: block;
padding: 5px 10px;
background-color: #003366;

}
.btn-default {

@extend .btn;
background-color: #0066cc;

}

This allows us to do the following HTML, no longer needing to spec-
ify both the btn and btn-default classes on an element. Only

one needs to be specified. We move the multiple declarations to the
CSS from the HTML.

Application of the class on a link

My button

Extending modules to create sub-modules are a way of avoiding
having to define multiple classes in the HTML. The naming conven-
tion becomes more important in this situation. Having a module
name of btn and a sub-module name of small would complicate

things when the only class that gets applied is small. A small

what? With btn-small, we can use the sub-module name on its

own and still know what its purpose is for.

Looking at the SASS source, we can also see that the btn-default

is a sub-module because of the use of @extend. Looking at the

generated source, we can still see that btn-default is a sub-mod-

ule because it will be grouped with the btn class.

Where extending modules fails is when we extend across disparate
modules.

78 Scalable and Modular Architecture for CSS

Sass extension across modules

.box {
border-radius: 5px;
box-shadow: 0 0 3px 0 #000000;
background-color: #003366;

}
.btn {

@extend .box;
background-color: #0066cc;

}

Extending across modules now ties these two concerns together.
There is no longer one source of truth for where the styles for a
module live.

By tightly grouping everything in the CSS, you lose the ability to do
just-in-time loading or to do conditional compilations depending
on the components you need to load into your app. Button and box
styles need to be loaded at the same time.

Extending even within the same module can introduce complexity
to a project that does just-in-time loading of styles. For example,
at Yahoo!, we would load the default button styles upon page load
but only load secondary styles—such as those for compose—when
that screen was requested. This kept the initial page load times very
quick.

SMACSS Extensions

Using the SMACSS approach, extensions are just handled at the
HTML level instead of the CSS level by defining the multiple classes
in the HTML.

Applying SMACSS module classes on a button

My button

Scalable and Modular Architecture for CSS 79

This has the added benefit of recognizing where the root element of
a module is. When looking at compiled HTML in the browser, it may
be difficult to discern where one module starts and where another
one ends. Since root module names don’t have any hyphenation,
they stand out in the crowd.

I recognize that it begins to feel like classitis where multiple (seem-
ingly unnecessary) classes are being added to the HTML. However,
these classes aren’t unnecessary. They clarify intent and increase
the semantics of the element in question.

Overused Mixins

Mixins are a handy way of avoiding repetition. However, CSS classes
are also a handy way of avoiding reptition. If you have the same
CSS being applied in multiple places, it may be worthwhile to move
that style into its own class.

Let’s say that a collection of modules all share a similar visual style
of a gray background and a blue rounded border. You might decide
to create a mixin for this.

Sass Mixin for common pattern

@mixin theme-border {
border: 2px solid #039;
border-radius: 10px;
background-color: #EEE;

}

.callout {
@include theme-border;

}

.summary {
@include theme-border;

}

That gets compiled into this:

80 Scalable and Modular Architecture for CSS

Compiled CSS from Mixin

.callout {
border: 2px solid #039;
border-radius: 10px;
background-color: #EEE; }

.summary {
border: 2px solid #039;
border-radius: 10px;
background-color: #EEE; }

SMACSS for Repetitive Patterns

In this case, because it is a visual treatment being added to various
containers, it’s worthwhile to place this into its own class.

Defining a class for common pattern

.theme-border {
border: 2px solid #039;
border-radius: 10px;
background-color: #EEE;

}

.callout {
}

.summary {
}

Then apply it to elements as required:

Applying the class

<div class="callout theme-border"></div>
<div class="summary theme-border"></div>

Scalable and Modular Architecture for CSS 81

Parameterized Mixins

To be clear, parameterized mixins offer up a lot of power that is just
not possible with CSS and there is no equivalent approach to solve
this beyond creating a lot of variations. The border-radius mixin
example from early in this chapter is a great example of a parame-
terized mixin.

Smack that preprocessor

We’ve looked at a few common pitfalls of preprocessors in compari-
son to how we might accomplish it with SMACSS. The typical answer
is: everything in moderation. Review the generated files and see if
the final result is what you expect. If there is plenty of repetition
then take a look at refactoring your approach.

Let’s look at a couple more ways in which a preprocessor can en-
courage better modularization of your code.

State-based Media Queries with Nesting

As we saw in the chapter, Changing State, media queries are one of
the ways in which we can detect and manage state changes. Most
tutorials demonstrate with a separate style sheet and stuff all of
the styles related to that state into a single file. This separates a
module definition into possibly multiple files, making it more diffi-
cult to manage.

Sass allows media queries to be nested, allowing those state
changes to be reflected where they belong: with the module.

Here is an example demonstrating nested media queries:

82 Scalable and Modular Architecture for CSS

Nested Media Queries in Sass

.nav > li {
width: 100%;

@media screen and (min-width: 320px) {
width: 100px;
float: left;

}

@media screen and (min-width: 1200px) {
width: 250px;

}

}

The default state is defined and then the alternate states of that
module are defined right from within that module. You can even
embed media queries inside other media queries and Sass will con-
catenate the media query conditions.

Here is what the nested example generates into:

Compiled CSS from Nested Media Queries in Sass

.nav > li {
width: 100%; }

@media screen and (min-width: 320px) {
.nav > li {

width: 100px;
float: left; } }

@media screen and (min-width: 1200px) {
.nav > li {

width: 250px; } }

Sass creates the separate media queries and embeds the selector
inside them. With this particular example, I specifically chose the
default state to be the small screen view that would match for any
screen under 320px. Then I switched to a floated navigation once it
reaches a specific width. Finally, it changes the width at 1200px but

Scalable and Modular Architecture for CSS 83

does not re-declare the float. I like this inheritence that occurs from
the default state through the various media queries.

Best of all, any alternate states for your module are declared with
the module.

Organizing Your Files

Preprocessors encourage the separation of concerns that SMACSS
recommends.

Here are some guidelines on how to separate the files in your pro-
ject:

• Place all Base rules into their own file.
• Depending on the type of layouts you have, either place

all of them into a single file or major layouts into
separate files.

• Put each module into its own file.
• Depending on size of project, place sub-modules into

their own file.
• Place global states into their own file.
• Place layout and module states, including media queries

that affect those layouts and modules, into the module
files.

With files separated in this way, it’ll make your project easier to
prototype. HTML templates can be created for individual compo-
nents and the CSS and template for an individual component (or
even a subset of components) can be tested in isolation of each
other.

Preprocessor-specific components such as mixins and variables
should also be specified in their own files.

84 Scalable and Modular Architecture for CSS

A sample directory structure

+-layout/
| +-grid.scss
| +-alternate.scss
+-module/
| +-callout.scss
| +-bookmarks.scss
| +-btn.scss
| +-btn-compose.scss
+-base.scss
+-states.scss
+-site-settings.scss
+-mixins.scss

Finally, create the primary CSS file that will include the other files.
For many sites, this might mean just including all of the files into
the master style sheet. For projects with conditional asset loading,
you can have container files that import only the necessary files for
specific screens.

Inside the master file

@import
"site-settings",
"mixins",
"base",
"states",
"layout/grid",
"module/btn",
"module/bookmarks",
"module/callout";

The precompiler will compile this into a single file for development
or deployment.

When you’re ready to launch, create a compressed version of your
CSS file for deployment. (Your environment may have build scripts
for deploying the rest of the application. Be sure to integrate pre-
processor compilation in that final build process.)

Scalable and Modular Architecture for CSS 85

Command line for compressed CSS file using Sass

sass -t compressed master.scss master.css

Post mortem on preprocessors

We looked at what a preprocessor is and how to install one. We
looked at some popular features and a few of the pitfalls. Finally,
we looked at how preprocessors can make organizing your project
easier. Preprocessors can definitely be a beneficial part of your
process.

86 Scalable and Modular Architecture for CSS

Drop the Base

There are some elements—not many, but a few—that aren’t used
very often. As a result, you might think (as I have) that it is safe to
style them as Base Rules expecting that their purpose will be singu-
lar and never changing. As you are likely to have read by now,
things change. We can plan for change and prevent future change
from complicating the work we have already done.

What elements fall prey to this potential problem? The button,

table, and input elements are the most common ones I’ve seen.

Let’s delve into an example of what can often happen on a project.

Table

Long gone from the web standardista’s playbook is the use of tables
for layout. As a result, the need to use a table on a project is often
not needed.

Until one day, it is.

This first and only table that is needed is to display a certain set of
data, such as a comparison table. The comparison table has a cer-
tain padding, column alignment, and borders. It looks great.

Scalable and Modular Architecture for CSS 87

Table Styles

table {
width: 100%;
border: 1px solid #000;
border-width: 1px 0;
border-collapse: collapse;

}

td {
border: 1px solid #666;
border-width: 1px 0;

}

td:nth-child(2n) {
background-color: #EEE;

}

A few days, weeks, or months later, there’s a need to add another
table in. This time, however, it serves another purpose. Headers on
the left, data on the right. The borders are getting dropped and
backgrounds are changing. Normally what we’d see here is an over-
riding of the default styles.

88 Scalable and Modular Architecture for CSS

Overriding Previous Styles

table.info {
border-width: 0;

}

td.info {
border-width: 0;

}

td.info:nth-child(2n) {
background-color: transparent;

}

.info > tr > th {
text-align: left;

}

.info > tr > td {
text-align: right;

}

The problem is that we’ve overriding styles because the base rules
were designed for a singular purpose. The base rules should be de-
signed for how we want them to appear as the default style and
then augment them for specific modules. The comparison table was
a module. It served a singular purpose and had a custom design,
even if it was the only occurrence of the elements used in that mod-
ule.

The solution is clear: make a module.

Scalable and Modular Architecture for CSS 89

Creating a module instead

table {
width: 100%;
border-collapse: collapse;

}

.comparison {
border: 1px solid #000;
border-width: 1px 0;

}

.comparison > tr > td {
border: 1px solid #666;
border-width: 1px 0;

}

.comparison > tr > td:nth-child(2n) {
background-color: #EEE;

}

.info > tr > th {
text-align: left;

}

.info > tr > td {
text-align: right;

}

The table element still has some base styles set. I have so rarely not
needed a table to expand to fill its container. Nor have I not used
border-collapse: collapse. These feel like they should be

browser defaults!

Our comparison module now sits in isolation, as it should. I speci-
fied child selectors to keep the impact as small as possible. If I
needed to embed a table within the table (which should generally
be avoided) then I can be assured that the comparison module
wouldn’t impact the table embedded within. Our info module is
now simplified to just two simple rules.

90 Scalable and Modular Architecture for CSS

Overall, we used less CSS to achieve the result we wanted while at
the same time being clearer with our code. Win-win.

As mentioned before, button and input elements can often suffer

the same fate as tables. If the style serves a specific purpose then
create a module. It’ll avoid the need to override styles or rewrite old
code.

Scalable and Modular Architecture for CSS 91

The Icon Module

CSS sprites have become a mainstay of modern web develop-
ment—and for good reason. They allow for multiple assets to be
compiled into a single resource, minimizing the number of HTTP
requests and ensuring that images for things like rollover states are
already loaded when needed.

Before sprites came along, images would be used in two different
contexts: as a background image, allowing other things to layer on
top of it; or as a foreground image, residing inline with text. With
sprites, everything is now a background image and positioned
within the mask of the element.

It is this latter scenario that this chapter will be specifically ad-
dressing.

This will be best explained with an example, so let’s look at a menu
with its accompanying icons.

Menu of items with icons

Menu HTML

<ul class="menu">
<li class="menu-inbox">Inbox
<li class="menu-drafts">Drafts

92 Scalable and Modular Architecture for CSS

The HTML is straightforward. We have a list of menu items. A class
is added to each menu item so that we can style each one different-
ly.

Menu CSS

.menu li {
background: url(/img/sprite.png) no-repeat 0 0;
padding-left: 20px;

}

.menu .menu-inbox {
background-position: 0 -20px;

}

.menu .menu-drafts {
background-position: 0 -40px;

}

All list items are set to the single sprite and then each individual
list item repositions the background to show the correct icon.

On the surface, this looks pretty good and it worked for us, for the
most part. As always, we began to run into edge cases where this
complicated matters.

• We became reliant on a very specific HTML structure: the
list item.

• Sprites had to be redefined to be used in other modules.
• Positioning within the element was very fragile: bumping

up font size could reveal other parts of the sprite.
• Handling right-to-left interfaces was more difficult since

we could only use horizontal sprites and fix the x position
to 0.

To resolve these issues, we moved to where the icon itself became a
module: the icon module.

Scalable and Modular Architecture for CSS 93

Restructuring the HTML to create the icon module

<i class="ico ico-16 ico-inbox"></i> Inbox

Many people would likely balk at the use of the i tag. I chose to use

it because it was small, mostly devoid of semantics, and was an
empty element with no content. Why is there no content? In this
example, the icon supports the visible text beside it. If the icon were
to sit alone, then we would add a title attribute so that it could be
read by a screen reader or used as a tooltip. If you disagree and feel
a span is more appropriate, I’ll understand.

By having a single tag with the various icon classes applied to it, it
no longer has any other HTML dependencies. That’s good. But why
three different classes? Each plays a slightly different role and all
ultimately come together to mimic a traditional img element.

Icon Module CSS

.ico {
display: inline-block;
background: url(/img/sprite.png) no-repeat;
line-height: 0;
vertical-align: bottom;

}

.ico-16 {
height: 16px;
width: 16px;

}

.ico-inbox {
background-position: 20px 20px;

}

.ico-drafts {
background-position: 20px 40px;

}

94 Scalable and Modular Architecture for CSS

The ico class defines the basics of turning the element into an

inline-block element, which is what an image is. You may need to
adjust vertical-align so that the icon sits relative to the text

correctly. Internet Explorer has issues with applying inline-

block to block elements. Since we're applying it to an inline ele-

ment, it doesn't have the same issue. Alternatively, you can use {

zoom:1; display:inline; } for block elements in IE to behave

like inline-block elements.

The ico-16 class sets the height and width. If your project only has

one size of icon, you could define the size in the ico class. If every

icon has a different size, you can define it in the class for the specif-
ic icon. For this project, we had sets of icons in about four different
sizes.

The last class, ico-inbox, positions the sprite to the correct coor-

dinates. By having a fixed icon size, there's no longer a concern of
the parent element growing too large and we can use the same code
for right-to-left interfaces without having to modify the back-
ground position.

Densely packed image sprite

A more densely packed image also allows for better compression.
Smaller file sizes will improve the performance of your site. (And if
you're not already, I recommend using Yahoo!'s Smush.it21 service
or ImageOptim22 for the Mac to ensure your images are as small as
possible.)

We've just looked at an example of how to refactor a specific part of
a project to make things more flexible. There are many ways to ap-

21.http://www.smushit.com/ysmush.it/
22.http://imageoptim.pornel.net/

Scalable and Modular Architecture for CSS 95

http://www.smushit.com/ysmush.it/
http://www.smushit.com/ysmush.it/
http://imageoptim.pornel.net/
http://imageoptim.pornel.net/
http://www.smushit.com/ysmush.it/
http://www.smushit.com/ysmush.it/
http://imageoptim.pornel.net/
http://imageoptim.pornel.net/

proach a problem and what looks like it'll work on the surface can
run into problems further into a project. Projects evolve as com-
plexities reveal themselves and part of the fun in doing web devel-
opment is deciding how best to solve these problems.

96 Scalable and Modular Architecture for CSS

Complicated Inheritance

This chapter looks at how inheritance can sometimes cause our
best laid plans to run afowl.

In this example, we will take a look at a Calendar that uses generic
State rules that conflict with the inheritance within the table cells
and how to possibly work around the problem.

Calendar Table

<table class="cal">
<tr>

<td>1</td> <td>2</td>
<td>3</td> <td>4</td>
<td>5</td> <td>6</td>
<td>7</td>

</tr>
<!-- repeated 3-4 times -->

</table>

The calendar consists of a table with rows and columns. Each cell is
a single day. The default style is is how a day cell should look under
normal circumstances.

The Day Cell

.cal td {
background-color: #EFEFEF;
color: #333;

}

Scalable and Modular Architecture for CSS 97

Each cell in my table has a light gray background with dark gray
text. Now, we want to highlight which day is today.

Styling Today

.cal td.cal-today {
background-color: #F33;
color: #000;

}

The cal-today class shows that the today class is part of the cal

module. We are also increasing the specificity which will have this
style override the default style. Alternative selector choices
could’ve included just a plain td.cal-today which would have

worked as long as it was declared after the default state rule. Had
we used just .cal-today as our selector, we would’ve had to resort

to using !important to get this style to work.

It is important to recognize that there are small decisions that have
to be made like this as the project develops. In the direction I chose,
I’m saying that the .cal-today class can only be applied on a

table cell (<td>) and that it would be inside an element with the

cal class (which, using SMACSS, should be considered a given).

Getting back to our example, everything looks good. Now, our cal-
endar is a smaller view that is connected to a larger view that shows
a week in full detail. Our miniature calendar needs to show which
week is the currently selected week.

98 Scalable and Modular Architecture for CSS

Selected Row

<tr class="is-selected">
<td>1</td>
<td class="cal-today">2</td>
<td>3</td>
...

</tr>

The selected state is being used throughout the application and so
it only made sense to use it here. What does the selected style look
like?

Selected Row Rule

.is-selected {
background-color: #FFD700; /* Yellow */
color: #000;

}

Can you see the problem? The problem is that the background
colour applies to the table row while the color inheritance gets
overridden by the greater specificity of both the base day style and
the today style.

I could add !important to my state, which I have mentioned

above as being an acceptable thing to do, but while it increases the
specificity when applying the style to the same element, it doesn’t
help us here because it won’t be inherited down to the cell. !im-

portant does not override inheritance, just specificity.

That means I need to create new rules to allow the selected state to
be reflected on child elements.

Scalable and Modular Architecture for CSS 99

Selected Row Rule for Table Cells

.is-selected td {
background-color: #FFD700; /* Yellow */
color: #000;

}

If this selector is defined after our calendar day selectors then
everything should render just as we would expect.

What colour will our cells be now? That depends. Was this style de-
clared before or after the cal classes? If it was after, then all cells

in the row will be styled correctly. Our today cell will still be
coloured in red, which, on this particular project, was exactly what
we wanted.

Where !important can go wrong

For argument’s sake, what if we added the !important rule to our

select cell CSS? Suddenly our today cell would no longer show to-
day; it would be styled like the rest of the week.

What adding !important would do

.is-selected td {
background-color: #FFD700 !important; /* Yellow

*/
color: #000 !important;

}

100 Scalable and Modular Architecture for CSS

To get the today cell styled correctly, we would have to create a new
rule that combines the state rule with the module rule.

Adding extra rules to work around specificity

.is-selected td {
background-color: #FFD700 !important; /* Yellow

*/
color: #000 !important;

}

.is-selected td.cal-today {
background-color: #F33 !important;
color: #000 !important;

}

From this last example, you can see that we are having to add more
selectors and more !important to keep things working correctly.

This is definitely not ideal.

An Imperfect World

The purpose of this example was to demonstrate that inheritance
can wreak some havoc on our well-laid plans and there isnʼt a per-
fect solution. SMACSS tries to mitigate many of these problems but
at the end of the day, sometimes you still have to create some less-
than-ideal solutions.

Minimizing the number of situations like these will still help keep
your project more maintainable.

Scalable and Modular Architecture for CSS 101

Formatting Code

Everybody has their own way. The tools and techniques that you
use are ones that you have tried either through trial and error or
you have tried what you heard works for other people. When I first
got into development, I used Dreamweaver. It had plenty of fea-
tures and allowed me to build static HTML sites quickly and effi-
ciently. After seeing a co-worker using Ultraedit and seeing how
fast he was able to get work done, I started to learn it as a way of
complementing my existing tool set. The same has occurred with
the way I code. I will see a technique or style that someone else uses
and I will assimilate those techniques into my own way of working.

This section, Formatting Code, is a brief look at how I code my work
and do so in a way that seems to work well for others having to con-
tinue working on my code.

Single line versus multiple lines

For many years, I have coded my CSS using the single line ap-
proach23. This means that all of the properties for a given rule set
are declared on the same line. This allows for quick scanning of the
selectors along the left. Being able to scan selectors has traditional-
ly been more important to me than seeing properties nicely lined
up. Up until just a couple years ago, the list of properties assigned
to a rule set were quite small; it would be unusual to have more
than a handful. Therefore, I could find the selector I wanted and all
of the properties would be visible on the screen.

With CSS3—and the myriad of vendor-specific prefixes that come
with it—things can get out of hand rather quickly. Between that
23.http://orderedlist.com/resources/html-css/single-line-css/

102 Scalable and Modular Architecture for CSS

http://orderedlist.com/resources/html-css/single-line-css/
http://orderedlist.com/resources/html-css/single-line-css/
http://orderedlist.com/resources/html-css/single-line-css/
http://orderedlist.com/resources/html-css/single-line-css/
http://orderedlist.com/resources/html-css/single-line-css/

and working with a larger team, it was easier for everybody to have
each property/value pair on its own line.

CSS3 with the plethora of vendor-prefixed properties can be too
much to read easily if all on one line.

.module {
display: block;
height: 200px;
width: 200px;
float: left;
position: relative;

border: 1px solid #333;
-moz-border-radius: 10px;
-webkit-border-radius: 10px;
border-radius: 10px;

-moz-box-shadow: 10px 10px 5px #888;
-webkit-box-shadow: 10px 10px 5px #888;
box-shadow: 10px 10px 5px #888;

font-size: 12px;
text-transform: uppercase;

}

In the example, there are 11 properties declared and we could easily
have a half-dozen more if we added another feature or two to our
module. Having these all on one line would leave the first handful
of properties visible on the screen and we would be left scrolling to
the right to uncover the rest of the properties. This makes it hard to
scan the document and see what properties have been defined.
Having everything on a single line can also make it harder to do
diff comparisons in version control.

There are a few other minor things to note with the example:

Scalable and Modular Architecture for CSS 103

• There is a space after the colon.
• Four spaces before each declaration (no tabs).
• Properties are grouped by type.
• Opening bracket on the same line as the rule set.
• Colour declarations use the short form.

These are all preferential and I will not begrudge you for using a
completely different approach. This is just what I have found that
feels natural and makes the most sense to me.

Grouping Properties

Some people organize alphabetically, others don’t organize at all,
and others may use some other arbitrary system. I fall in this last
category. It’s not completely arbitrary, mind you. I would describe it
as ordering from most important to least important but what is im-
portant when it comes to declaring styles on an element?

I organize in the following order:

1. Box
2. Border
3. Background
4. Text
5. Other

Box includes any property that affects the display and position of
the box such as display, float, position, left, top, height,

width and so on. These are most important to me because they af-

fect the flow of the rest of the document.

Border includes border, the oft-unused border-image, and

border-radius.

Background comes next. With the advent of CSS3 gradients, back-
ground declarations can actually become quite verbose. Once
again, vendor prefixes just compound the issue.

104 Scalable and Modular Architecture for CSS

Multiple backgrounds with CSS3 declarations. Code example
from Lea Verou’s CSS3 Pattern Gallery24.

background-color: #6d695c;
background-image: url("/img/argyle.png");
background-image:

repeating-linear-gradient(-30deg,
rgba(255,255,255,.1), rgba(255,255,255,.1) 1px,
transparent 1px, transparent 60px),

repeating-linear-gradient(30deg,
rgba(255,255,255,.1), rgba(255,255,255,.1) 1px,
transparent 1px, transparent 60px),

linear-gradient(30deg, rgba(0,0,0,.1) 25%,
transparent 25%, transparent 75%, rgba(0,0,0,.1)
75%, rgba(0,0,0,.1)),

linear-gradient(-30deg, rgba(0,0,0,.1) 25%,
transparent 25%, transparent 75%, rgba(0,0,0,.1)
75%, rgba(0,0,0,.1));
background-size: 70px 120px;

Complex patterns are possible with CSS3 gradients but create for
lengthy background declarations, and the example doesn’t even in-
clude CSS3 prefixes. Just imagine how long this declaration would
be if it did!

Text declarations include font-family, font-size, text-

transform, letter-spacing and any other CSS properties that

affect the display of the type.

Anything that doesn’t fall into any of the above categories gets
added to the end.

Colour Declarations

This may seem like a silly thing to even mention but I have seen dif-
ferent developers do different things. Some like using keywords like
black and white but I have always tried to stick to either the 3

digit or 6 digit hex format wherever possible. #000 and #FFF are

24.http://leaverou.me/css3patterns/

Scalable and Modular Architecture for CSS 105

http://leaverou.me/css3patterns/
http://leaverou.me/css3patterns/
http://leaverou.me/css3patterns/
http://leaverou.me/css3patterns/

shorter, albeit barely, then their keyword counterparts. Likewise, I
wouldn’t use rgb or hsl, since the hex form is shorter. Of course,

rgba and hsla have no hex form and they would get used.

Be Consistent

At the end of the day, the important part—like much of what
SMACSS describes—is to establish a standard, document it, and be
consistent with it. It will make it easier on you and others as your
project evolves.

106 Scalable and Modular Architecture for CSS

Resources

There are plenty of great tools and other resources out there. Some
of them are directly related to the concepts discussed here and oth-
ers are just useful tools to have in your repertoire.

SMACSS Resources

Since the initial release of the book, SMACSS-related resources have
started to pop up.

• Middleman SMACSS25

• SMACSS for Drupal26

• SCSS Toolkit27. A starter toolkit based on SMACSS.
• Kickstart SMACSS28

CSS Preprocessors

• LESS29

• Sass30

25.https://github.com/nsteiner/middleman-smacss
26.http://drupal.org/sandbox/johnalbin/1704664
27.https://github.com/davidrapson/scss-toolkit
28.https://github.com/Anderson-Juhasc/kickstart-smacss
29.http://lesscss.org/
30.http://sass-lang.com/

Scalable and Modular Architecture for CSS 107

https://github.com/nsteiner/middleman-smacss
https://github.com/nsteiner/middleman-smacss
http://drupal.org/sandbox/johnalbin/1704664
http://drupal.org/sandbox/johnalbin/1704664
https://github.com/davidrapson/scss-toolkit
https://github.com/davidrapson/scss-toolkit
https://github.com/Anderson-Juhasc/kickstart-smacss
https://github.com/Anderson-Juhasc/kickstart-smacss
http://lesscss.org/
http://lesscss.org/
http://sass-lang.com/
http://sass-lang.com/
https://github.com/nsteiner/middleman-smacss
https://github.com/nsteiner/middleman-smacss
http://drupal.org/sandbox/johnalbin/1704664
http://drupal.org/sandbox/johnalbin/1704664
https://github.com/davidrapson/scss-toolkit
https://github.com/davidrapson/scss-toolkit
https://github.com/Anderson-Juhasc/kickstart-smacss
https://github.com/Anderson-Juhasc/kickstart-smacss
http://lesscss.org/
http://lesscss.org/
http://sass-lang.com/
http://sass-lang.com/

Component-based Frameworks/Methodologies

• Object-Oriented CSS (OOCSS)31

◦ OOCSS for JavaScript Pirates Slides32

◦ MailChimp UI Library based on OOCSS33

• BEM34

Other Frameworks

• HTML5 Boilerplate35

• normalize.css36

• Bootstrap37

• 960.gs38

• Eric Meyer CSS Reset39

Documentation

• Front-end Style Guides40

• Knyle Style Sheets41

31.http://oocss.org/
32.http://speakerrate.com/talks/4642-oocss-for-javascript-pirates
33.http://www.flickr.com/photos/aarronwalter/5579386649/
34.http://bem.github.com/bem-method/html/all.en.html
35.http://html5boilerplate.com/
36.https://github.com/necolas/normalize.css/
37.http://twitter.github.com/bootstrap/
38.http://960.gs/
39.http://meyerweb.com/eric/tools/css/reset/
40.http://24ways.org/2011/front-end-style-guides
41.http://warpspire.com/posts/kss/

108 Scalable and Modular Architecture for CSS

http://oocss.org/
http://oocss.org/
http://speakerrate.com/talks/4642-oocss-for-javascript-pirates
http://speakerrate.com/talks/4642-oocss-for-javascript-pirates
http://www.flickr.com/photos/aarronwalter/5579386649/
http://www.flickr.com/photos/aarronwalter/5579386649/
http://bem.github.com/bem-method/html/all.en.html
http://bem.github.com/bem-method/html/all.en.html
http://html5boilerplate.com/
http://html5boilerplate.com/
https://github.com/necolas/normalize.css/
https://github.com/necolas/normalize.css/
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://960.gs/
http://960.gs/
http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/
http://24ways.org/2011/front-end-style-guides
http://24ways.org/2011/front-end-style-guides
http://warpspire.com/posts/kss/
http://warpspire.com/posts/kss/
http://oocss.org/
http://oocss.org/
http://speakerrate.com/talks/4642-oocss-for-javascript-pirates
http://speakerrate.com/talks/4642-oocss-for-javascript-pirates
http://www.flickr.com/photos/aarronwalter/5579386649/
http://www.flickr.com/photos/aarronwalter/5579386649/
http://bem.github.com/bem-method/html/all.en.html
http://bem.github.com/bem-method/html/all.en.html
http://html5boilerplate.com/
http://html5boilerplate.com/
https://github.com/necolas/normalize.css/
https://github.com/necolas/normalize.css/
http://twitter.github.com/bootstrap/
http://twitter.github.com/bootstrap/
http://960.gs/
http://960.gs/
http://meyerweb.com/eric/tools/css/reset/
http://meyerweb.com/eric/tools/css/reset/
http://24ways.org/2011/front-end-style-guides
http://24ways.org/2011/front-end-style-guides
http://warpspire.com/posts/kss/
http://warpspire.com/posts/kss/

Other Resources

• mustache42 is a logic-less template language. It’s the
format we chose at Yahoo!.

• Pattern Primer43 is a PHP script that lets you preview your
snippets of HTML all on one page.

• Terrifically44 is a JavaScript/jQuery framework for
working with OOCSS.

42.http://mustache.github.com/
43.https://github.com/adactio/Pattern-Primer
44.http://www.terrifically.org/

Scalable and Modular Architecture for CSS 109

http://mustache.github.com/
http://mustache.github.com/
https://github.com/adactio/Pattern-Primer
https://github.com/adactio/Pattern-Primer
http://www.terrifically.org/
http://www.terrifically.org/
http://mustache.github.com/
http://mustache.github.com/
https://github.com/adactio/Pattern-Primer
https://github.com/adactio/Pattern-Primer
http://www.terrifically.org/
http://www.terrifically.org/

	cover
	smacss-2nd
	smacss-title
	Scalable and Modular Architecture for CSS
	By Jonathan Snook

	smacss-copyright
	smacss-book
	About the Author
	Introduction
	What’s in here?

	Categorizing CSS Rules
	Naming Rules

	Base Rules
	CSS Resets

	Layout Rules
	Using ID selectors
	Layout Examples

	Module Rules
	Avoid element selectors
	New Contexts
	Subclassing Modules

	State Rules
	Isnʼt it just a module?
	Using !important
	Combining State Rules with Modules

	Theme Rules
	Themes
	Typography
	What’s in a name

	Changing State
	What is a state change?
	Change via Class Name
	Why parent and sibling states are problematic
	Handling State Change with Attribute Selectors
	Class-based State Change with CSS Animations

	Change via Pseudo-class
	Change via Media Query
	It’s all about State

	Depth of Applicability
	Minimizing the Depth

	Selector Performance
	How CSS gets evaluated
	The style of an element is evaluated on element creation
	CSS gets evaluated from right to left.

	Which rules rule?
	Constrain yourself, don’t choke yourself

	HTML5 and SMACSS
	Prototyping
	Goals of a prototype
	States
	Localization
	Dependencies

	Pieces of the puzzle
	Your Prototype

	Preprocessors
	What is a preprocessor?
	Installing a preprocessor

	Useful features of a preprocessor
	Variables
	Nesting
	Mixins
	Functions
	Extensions
	Even more

	Getting into and out of trouble
	Deep Nesting
	Nesting with SMACSS

	Unnecessary extending
	SMACSS Extensions

	Overused Mixins
	SMACSS for Repetitive Patterns
	Parameterized Mixins

	Smack that preprocessor
	State-based Media Queries with Nesting
	Organizing Your Files

	Post mortem on preprocessors

	Drop the Base
	Table

	The Icon Module
	Complicated Inheritance
	Where !important can go wrong
	An Imperfect World

	Formatting Code
	Single line versus multiple lines
	Grouping Properties
	Colour Declarations
	Be Consistent

	Resources
	SMACSS Resources
	CSS Preprocessors
	Component-based Frameworks/Methodologies
	Other Frameworks
	Documentation
	Other Resources

